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ABSTRACT 

/ A / / /  9 
An approach to optimal guidance synthesis is developed in which an ensemble- 

averaged second order approximation to the performance function is minimized 

subject to constraints on the means and variances of other functions. The minimi- 

zation is with respect to  coefficients of assumed polynomial approximations of a 

linear feedback control law (in which the state is perfectly known) and coefficients 

in a linear termination law. A brief comparison is drawn with deterministic neigh- 

boring extremal control. While attention is directed mainly to first order necessary 

conditions, some comments are made on numerical solution by first and second 

order successive approximation methods. Extensions to  include disturbances other 

than initial e r r o r s  and to include state estimation e r r o r s  are discussed briefly. - 
- - - - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - -  
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Introduction 

The earliest theoretical approaches to optimal guidance (Refs. 1 and 2) 

lead to  computational methods for  synthesizing linear feedback systems fur- 

nishing an approximation optimal to second order in an expansion about a 

given optimal reference trajectory. While the resulting systems fulfill their 

theoretical promise in providing high performance, terminal accuracy is 

found to be wanting, and the practical mechanization of the feedback law is 

encumbered by the need for storing time-varying "gains". Recent studies of 

the terminal accuracy problem (Refs. 3 and 4) indicate that a large improve- 

ment may be realized by transverse state comparison with the reference tra- 

jectory and suggest that this relatively simple procedure may be more effective 

than the addition of quadratic terms in the feedback approximation. 

The present paper reports an idea for a synthesis scheme in which an 

ensemble-averaged second order approximation to the performance index is 

minimized with respect to certain parameters. These parameters include the 

coefficients in three polynomials in time which are used in place of general 

time-varying functions. Polynomial approximations are used for (1) the con- 

trol  programs of the optimal reference trajectory; (2) the state variable his- 

tories of the optimal reference trajectory; (3) the feedback gains for the 

assumed linear feedback control system. Additional parameters to  be opti- 

mized are the coefficients in an assumed linear rule for termination of per- 

turbed trajectories. The treatment is based upon the statistical methods 

pioneered in Refs. 5 and 6 in connection with synthesis of optimal midcourse 

guidance approximations. 
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Formulation of the Problem 

The dynamical system under consideration satisfies 

x = f(xt ut t) 

where 

x( t )  is an n-vector of state variables 

u( t )  is an m-vector of control variables 

t 

f is an n-vector of known functions of x, u, t 

is the independent variable (hereafter called time) 

The system operates over a finite time interval. The initial time t is assumed 

fixed, but the initial state is a vector of random variables with spechod 011- 

semble average properties. The problem is to minimize the ensemble average 

of a given function of the terminal conditions* 

0 

J = e h p k ( t f ) , t f l ]  

subject to the constraints 

e l$Gr ( t f ) , t f13  = 0 

= N  

th 
where g' is the j 

specifying the means and variances of the functions @ . 
component of any vector g. J is to ,e minimized while 

j 
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It is assumed that nominal* control programs ;( t )  have been determined 

which minimize <p [ ;( if), if 1 while meeting constraints 4 [ ;( t ) t 1 = 0 .  Thus, 
f ’ f  

- 
x = f(Z, E’ t )  

m I i = - (%)A 

a2 f AT = 0 (- # 0 is assumed) 
all - 2  

with boundary conditions 

t , F(t ) specified 
0 0 

( F f )  - = -(Z + -T u &k) 
t =tf a t  - t=tf  

T th ag where ( ) is the transpose of ( ), the i j  element of a matrix - 

g and y both vectors, is - ag . With Z ( t )  and F(t) specified, the 

analysis will be carried out in terms of the perturbation quantities 6u( t ) 

and 6x( t ), where, by definition 

i a Y ’  

a +  

u ( t )  = E(t) + 6u( t )  (12) 

x ( t )  = Z(t) + 6x( t )  (13) 
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The minimization of J is to be carried out with respect to a number of 

parameters of the problem. One set of these parameters appears in the rule 

for terminating trajectories which must be imposed because there is no auto- 

matic way to determine t on each member of the ensemble. Suppose that the 

termination rule is described by 
f 

where S2 may be any once differentiable function of x and t. Consistent with 

the second order approxiination theory to be employed, the optimality of the 

reference trajectory leads to the result that the most general R re lwant  in 

the analysis is a linear function of x and t. To first order, then, (14) may 

be written as 

where, by definition, 

= (””. + ”R) 
a x  a t  - t =tf 

Since t = t + dt 

h) # 0. This is simply the statement that R 

motion if (15) is to give a solution for t 

the terminal time may be determined from (15) provided 
f f f ’  

must not be a constant of the 

f ‘  

Solving (15) for dt  gives f 

dtf = fi + Ox 6x(if)  
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t 

fi and 

of generality in assuming R = - 1. 

are the parameters to be optimized: i t  is csvident therc is no loss 
X 

The system controls for each member of t h e  cmscnildc are assumed to 

sat isfy 

i = O  k-- 0 

where N N and N are specified, a b c are unspecified. The first 

te rm in (17) is the polynomial approximation to G( t ). The second t e rm is the 

result  of an assumption that the feedback control is linear in x( t ) .  The Cck t 

is the polynomial approximation to Z( t ) .  Cb. t? is the assumed form of the 

feedback gain. The most general linear feedback would use an m x n  matrix, 

say A( t),  of unspecified functions of time. Thus, the formulation used here 

replaces the most general linear feedback control system, which would require 

storage of Z( t ), Z( t ) and A( t ), by a linear feedback control utilizing poly- 

nomial approximations. It may be verified by inspection that a b,, c arc 

m x 1, m x n, n x 1 matrices for each i, j, k respectively. 

uy g X i’ j’ k 

k 

J 

i’ J k 

The problem, then, is to simultaneously choose all parameters a, R 
X’ 

a, b, c to nlinimize J while satisfying the $I’ mean and variance constraints. 
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Derivation of Necessary Conditions for the Optimal Parameters 

The approach used here will be to adjoin all relevant constraints to the 

performance index by means of Lagrange multipliers. Hence, 

The essential approximation of the analysis is the assumption of 'lsmall" per- 

turbations. The ensemble of system trajectories is treated by expanding about 

the nominal path and keeping terms through quadratic in 6x and 6u, but 

dropping higher order terms. As  an example:* 

e{qbc( t f ) , t f l ]  = q[?i(t,),ifl + LEe(dx) ax  + = e ( d t ) l  a t  t=tf - 

2 
d x + d t  &I? dt] - (19) 

a t2 t'tf a t  ax  
a x  

Evaluation of (19) requires evaluation of 

= 6x(Cf) + l L  - i ( 7 ) d T  

tf 

But 

a2 h 
vectors, is defined to be ~ ~ . 
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i ( 7 )  = E ( T )  + & ( T )  

.. = - -  X(tf) + Z(if)(T -if) + - - - 

+ [ % 6 x + -  a f  a u  bu] - + - - -  
t = t  f 

Substituting (21) into (20) and dropping terms above second order gives 

2 .. dCx( t f ) I  = 8x( i f )  + Z(t ) dtf + g 1 -  .(Ef) dtf 
f 

f t= t  

Everywhere in (19) that dt  appears it is replaced by 6 + SI 6x(cf ).* This 

makes all terminal functions depend only on quantities evaluated at t = t 
f X 

f ’  

The terms in (18) are integrated by parts. The Lagrange multipliers 

u are written 

u = V + d U  

where dv is assumed to be of order 6x(’t: ). It is further assumed that the 

Lagrange multiplier functions 6 X ( t ) a r e  of order 6x( t ) .** The Lagrange 

multipliers k 

the basic assumption that the entire ensemble of trajectories lies within an 

adequately small neighborhood of the reference path. 

f 

are assumed to be order one. These assumptions all rely on 
j 

Expansion of (18) through second order and grouping similar terms gives 

- -  
* 
** 

- 
c1 is assumed to be the order of e [ ax( cf) 1 . 
Note that 6 X( t ) is different on each member of the ensemble, jus t  as 
6x ( t )  is. A (  t )  is the same for each member, given by (6) and (10). 
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T a 4  bf + 'C{6xT[? + 2 0 x  a x  ax 
2 

+ &[s af 6 u ( n  + R  8x1 
ax  

X 2 t= t  ax  a u  
f 

j =1 

P 1-2 E 2 
e[6x(if)]  - ), k. Nj + 21;) [ 6 + ) , k j ( $ j )  ] - + dvT[(g ax + sax) 

J t'tf 
j =1 j =1 

- 
'T  - T af . T 

+ eC6X 6xItzt  + & J  {(AT+ 6 X  )(x + ax) + (?+ 6?)f + X (- a x  6x 
0 t 

0 

T a 2 H  6 x  6 u + 6 u  - T a 2 H  
2 af 

au 2 + -  6u) + [ 6 x T 9  bx + & x  a x  a u  a u a x  
ax 

T a f  a f  
a u  6 u l +  6X ( ~ 6 x  + - du)]dt 

T a2H 
+ &u 2 

a u  

where extensive use has been made of the following notational substitutions: 

-T ' p = c p + v #  
T 

H = X f  
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I is the identity matrix 

-T a2( -T a2( a2( ;r + a2( 
a t2 

x + x  + x +  
2 a x a t  a x  a t  a x  a x  

(") = x 

and all derivatives are evaluated on the reference path. 

Using (12), (13), (17), 6 u ( t )  may be written as 

6 u ( t )  = u ( t )  - E ( t )  

Ng Nx 
i -  

NU 

= 1 a i t  - u ( t )  + L b. l![dx(t) +;;<t) - ck tk ]  3 
i = O  j = O  k= 0 

The following purely symbolic notations are introduced for convenience: 

i 
Nu L ai t = at 

i = O  

7 bj t j  = bt 

j=O 

k 
NX 1 C k t  = ct 

k= 0 

With these substitutions 6 u( t ) may be written as 

- 
6 u ( t )  = at - u ( t )  + bt [bx( t )  + Z ( t )  - c t l  

6 u ( t )  from (26)  may be substituted into (24), giving J as a function of 6 C2 
a,  b, c and other quantities. A necessary condition for optimal choice of the 

unspecified parameters is that dJ be zero for arbitrary first order changes in 

X' 

the parameters. 
9 
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By virtue of the optimality of the reference trajectory, all first order 

terms in dJ, and the 6u ( t  ) term also, drop out. Thus, dJ  is composed 

entirely of second order te rms  and by a straightforward development, may be 

written as 

f 

j =1 

J j =1 t =tf 

j =1 

T a w  +h2rr;ii P 2 T 
+ X k . ( $ )  ]+dvT$}  - d E + t r { X [ ( 2 )  +(%) (G) X 

f t = t  J 
j =1 

a2 H 

a u  a u  

2 
+ ( b t ) T y h t ) [ a t  -;+bt(X-ct)IT(& + -bt)]6(6x) 2 

T T a f -  i NU 2 

+ [6xTh ax a u  + [at -u + b t ( x - c t ) ] T y  a U  + ( 6 x  L + & )-It a u  da i 
i = O  

10 



Ng 2 

a u  
( 6 x  +'3i - ct)(6xTh + [at - u + bt( 6x + x  - ct)lT+) ax a U  

j=O 

T T a f  - T i 2 H  - T 
NX 

+ [at - u + bt( 6x +x- ct)] + (Z-c t ) (bx  L+.C )-]$db. a U  
J - l [ 6 x  ax a U  

k= 0 

2 - a + ( 6 ~ ~ L + 4 ~ ) E ] t ~ d c ~ ) d t  
2 

a u  

where, by definition, tr stands for trace and 

X ( t )  = eC8x(t)  6xT(t)] 

Setting dJ  = 0 provides necessary conditions for extremizing choices of 

the control parameters. The Lagrange multipliers 8 X satisfy 

2 2 
+ -  >' (a2; T a2H a bt + ( b t r y  bt)bx 6X + - + ( b t )  - 

a u  
a u a x  a x a u  ax  

- 2 
+ (btT-)[at - u + bt (x-c t ) l  = 0 

a U  

T aoaf P 

j =1 

ZI! + 6 ax)} - + L kj 9 (ax + GQx)] + dv ( a x  . j  a + j  

t = t  j =1 f 

11 



~- 
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Because 8x( t )  is a vector of random variables, 6 A (  t )  is also. Neither can 

be used computationally. However, it may be verified by direct substitution that 

6A( t )  = L( t )  bx ( t )  + t ( t )  

where L( t )  and C( t )  are the same for every member of the ensemble. 

2 
+ -  a2 H bt + ( b t r y  bt = 0 a x  a U  a u  

The boundary conditions for L and t are  evident by inspection of (29). 

To obtain the remainder of the necessary conditions resulting from d J  = 0, 

it is necessary to develop the differential equations for &( ax) and for X. 

First, it may be noted that &( 6x) appears only in terms that are second order, 

hence it need be calculated only to first order. The linearized perturbations of 

(1) with 6u( t )  f rom (26)  immediately give 

It is convenient to define 

6x = &(ax) + 6; 

12 



'. , 

so that 

X = e ( 6 x ) e ( 6 x T )  t % 

Then, by direct substitution 

rv 

The boundary conditions for E (  a x )  and X are given by 

e [ax( t, ) I  , specified 

T 
e [6x( t  ) 6x ( t  ) I  = X(t ), specified 

0 0 0 

H 2 
There are thus 2(n + n )  differential equations for E (  ax), X, 4 ,  L and 

corresponding boundary conditions, half at t 

at t' involve the Lagrange multipliers dv and k.; constraint equations 

(3) and (4) furnish the additional required 2p relations. 

and half at 
0 f '  The conditions 

f J 

From (16) it is clear that E is a bias in the choice of dt Such a bias f '  
gives added flexibility because the differences of at and ct from iT and X - 
respectively cause e [ax( t ) ]  to be non-zero. Applying dJ  = 0, 62 may be 

explicitly so1ved"for in terms of other parameters of the problem: 

p a + - -  a f  + ($@) + f, kj $ *j (= a $  + $ .,>]. ( ax)  + dVT $ i x a x  a x  
- j =1 n = - )  

(35) 

(36) 

(38) 

(39) 

I J t =tf 

13 
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I - 
Thus, n need not appear as an unknown in any numerical optimization pro- 

cedure. 

The parameters 62 may also be solved for, from dJ = 0, in terms of 
X 

quantities evaluated at t = if : 

After utilizing (40) and (41), the unspecified parameters are a, b, c. These 

must satisfy integral relations which result from dJ  = 0, for arbitrary small 

changes da, db, dc. 

- 
T af i tf 2 

t a U  

0 = {e( SxT) & + cat -Ti  + bt(Z - ct)lT + [e( 8xT)L + .C 1au)t dt 

0 

i = 0, 1, 2, - -, N 
U 

- 
2 

T tf 2 
0 = {k + (x - &)e(  6 x T ) l z  + [X(bt) + e(  6x)Cat - u + bt(x - ct)lT 9 

t i3U 
0 

T T  - T a 2 H  + (X - &)e( 8x )(bt) + (Z - ct)[at - u + bt(x - ct)]  3 7  
a U  

Taf j + (x - c t ) k (  6xT)L + .C 1 au}t dt 

j = 0, 1, 2, - -, Ng 

14 



* * 
I - 

T af  k tf 2 2 

t a u  
0 = { e ( 6 x T ) s +  C a t - i i + b t ( e ( 6 x ) + % - c t ) 3 T y + k ( 6 x T ) L + L l - - ) t  a u  dt  

(44) 0 

k = 0,1,2, - -, N 
X 

The parameters a, b, c may not be eliminated algebraically because other 

quantities depend on them. The necessary conditions involving e( 6x), X, 4, 

L, a, b, c a r e  all interlocked. This is characteristic of dynamic system 

optimization problems with control parameters. Although such problems are 

seldom easy, the one considered here presents no new conceptual difficulties. 

N 
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An Alternative Approach to the Necessary Conditions Derivation 

This analysis is based on second order expansions and is closely related 

to the second variation guidance schemes of Refs. 1 and 2. There, for a single 

perturbed trajectory, the second variation of the performance index is minimized 

subject to satisfaction of the = f and 9 = 0 constraints. One proceeds by 

making stationary the function Q = cp + cT$, where properly chosen F will 

lead to satisfaction of the terminal constraints. The second variation of Q , 
fromRefs.  1 and 2, is 

2 

J2 = a x  2 [ & T u d x + d x T A d t + d t -  ax a t  a t  a2' ax  dx + d t  a t2 d t ]  t = - tf 
- 
4. 

2 
8~ + 6uT a2H 6x + 6uT du]& (45) 

T a2H 
bf 2 

t ax a u  + [8xTaH 2 6x + 6x ax a u  a u  ax 2 
0 

Since the reference path satisfies all the constraints, it is sufficient to adjoin 

the linearized perturbation constraints 

a +  
- u d @  = + x d t ]  = 0 

f t = t  
(47) 

1 
Then, given 6x( t ), 8u( t ) is chosen to minimize - J while satisfying 

0 2 2  
constraints (46) and (47). This leads to a linear feedback relation 

It is tacitly assumed that x( t ) and u( t ) as well as A( t ) are "stored" 

(available to the guidance system). 

16 
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The significant operational simplification of neigliin,ring exti-ciml guidance 

introduced in this paper is the substitution of a relatively small number of poly- 

nomial coefficients for the functions ;( t ), x( t j, A( t ). The general fiinctions of 

time would require tables of values vs.  time in operation with a digital computer. 

U s e  of polynomial coefficients instead may be expected to greatly reduce the 

storage requirements. 

An additional advantage of the polynomial approximations is that the difficulty 
j A( t ) -, O3 as t 4 t disappears. The polynomial C b. t 

behaved in the neighborhood of t = 

parison, so important for neighboring extremal control, may become less sig- 

nificant in analyses conducted along the present lines. 

will certainly be well 
f J 

f '  Thus, the need for a transverse state com- 

It is, of course, necessary to satisfy the constraint (46) in any (small per- 

turbation) analysis. It is not possible, however, to satisfy (47) for arbitrary 

6x(  t ) with the polynomial approximations. Hence, the use of a statistical per- 

formance index is not only appropriate, but even unavoidable. The alternative 

approach to  the derivation of the previous section is to consider minimizing the 

0 

1 j f  
2 2' 

ensemble average of - J Constraints on the mean and variance of the J, s 

[equations (3) and (4)I are imposed. Because these ensemble averages involve 

only the mean and covariance of 6x( t), it is sufficient to  use the differential 

equations for  &(  6x) and X in place of (46). Thus, (24) is fully equivalent to 

L j =1 0 

+ - [&(6x)E(6xT) l  d - X]}dt 
dt 

17 



Here 4 ( t )  and L( t )  appear as a vector and matrix respectively of Lagrange 

multiplier functions. &( t ) is the vector adjoint to  6 €',E 6 x( t )1, L( t ) is the 

matrix adjoint to 6X( t ) .  All the necessary conditions of the previous section 

may be obtained by requiring J of (49) to be stationary with respect to arbitrary 

small changes in the unspecified parameters. 

* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* Since L multiplies symmetric matrices in (49), it may be assumed symmetric 

with no loss of generality. 
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Possible Additional Complexities 

The analysis as presented allows disturbances only in the form of pertur- 

bations in the initial state variables. It also assumes that the state is known 

perfectly at all times. Both restrictions may be relaxed while still retaining 

the polynomial approximation approach. 

Disturbing influences may arise f rom perturbations of system parameters 

f rom their reference values. For example, the thrust and/or fuel consumption 

rate of a rocket vehicle may deviate from its pre-planned value. To allow for 

this in the analysis presented here, such system parameters may be regarded 

as state variables with zero time derivatives. Thus, a parameter deviation 

becomes an initial state variable perturbation. 

Time-dependent random forcing functions may be added to the analysis if 

their means and covariances are known, although serious complications may 

arise if the noise is appreciably correlated in time. The main effect with zero- 

mean white noise would be to add a t e rm to X . The other equations would be 

unaltered, but any numerical solution might be substantially different. 

If state estimation e r ro r s  were not considered negligible, it would be pos- 

sible to include them by considering the estimator characteristics. A linear 

perturbation estimator would be consistent with the degree of approximation 

used here. The estimator gain matrix would play a role analogous to the feed- 

back gain matrix. It would be approximated by a polynomial analogous to Cb. t?. 
J 

The polynomial coefficients would be added to the others, all to be chosen 

simultaneously to optimize the system ensemble average performance. 

19 



Computational Considerations 
4 

The preceding analysis has been devoted to problem formulation and 

development of first order necessary conditions for a minimum. Computa- 

tional determination of the control parameters which actually furnish a mini- 

mum represents a second phase of study. It i s  clear, however, that any of the 

methods applicable to the solution of Mayer/Bolza variational problems appear 

likely to be equally suitable to parameter optimization p rob lem of the present 

type. On the basis of experience, the writers are favorably inclined toward 

the use of gradient methods (Refs. 7 and 8) and methods of the second variation 

type (Ref. 9), and in this connection it should be noted that the usual require- 

ment for  rapid access storage of control variables versus time is eased in favor 

of a somewhat less  severe requirement for storage of parameter values. With 

the second order method of Ref. 9, it appears that parameter optimization will 

entail the solution of fairly large linear algebraic systems, and hence that 

greater attention than usual must be given to e r r o r  propagation problems. 

Concluding Remarks 

The present paper has sketched in some detail an ensemble averaging 

approach to optimal guidance polynomial approximations. Conclusions on the 

merits of this approach must be deferred until numerical examples of syn- 

thesis procedure have been worked and system simulations performed. In 

connection with the problem of guidance system mechanization, it will be of 

interest to investigate the use of transverse state comparison o r  some similar 

mode of comparison employing polynomial representation. 
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